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1 Some financial optimization models:
I Risk management

HENRIK DAHL, ALEXANDER MEERAUS and
STAVROS A. ZENIOS

1 Introduction

Since the early seventies the domain of financial operations witnessed
a significant transformation. The breakdown of the Bretton Woods
Agreement, coupled with a liberalization of the financial markets and the
inflation and oil crisis of the same time, led to increased volatility of interest
rates. The environment of fixed-income securities, where private and
corporate investors, insurance, and pension fund managers would turn for
secure investments, became more volatile than the stock market. The
fluctuation of bonds increased sharply after October 1979 when the Federal
Reserve Bank adopted a policy allowing wider moves in short-term interest
rates. According to the volatility indexes, compiled by Shearson Lehman
Economics, bonds were more volatile than stocks by a factor of seven in the
early eighties.

Uncertainty breeds creativity, but so does a dynamic market where
intelligent answers to complex problems are rewarded immediately. As
a result we have seen an increased use of advanced analytic techniques in
the form of optimization models for many diverse aspects of financial
operations. Several theoretical developments provided the building blocks
on which an analyst could base a comprehensive planning model. Models
for the estimation of the term structure of interest rates, the celebrated
Black-Scholes formula for valuating options, and other complex instru-
ments, were added to the long list of contributions since Markowitz’s
seminal work on mean-variance analysis for stock returns in 1952.

During the same period tools from management science/operations
research reached a stage of maturity and sophistication that gained the
attention of practitioners in this dynamic environment. Operations re-
search analysts found a very exciting problem domain where their tools
could have a significant impact. Developments in computing technology,
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4 H. Dahl, A. Meeraus, and S. Zenios

with the advent of workstations, facilitated the easy development and
validation of models. As a result optimization models are becoming
indispensable tools in several domains of financial operations. It is
probably too early to pass judgment but financial optimization promises to
be an area of applications comparable to the use of management science
models in logistics, transportation, and manufacturing.

In this chapter we hope to demystify several widely used optimization
models. The field of financial optimization has reached a stage where the
appropriate modeling techniques are well understood for most applica-
tions. Nevertheless, problems remain where either new modeling ap-
proaches are required or existing solution techniques are not appropriate.
Even in the better understood models, however, knowledge of the
management science and the finance communities about them remains
anecdotal. We provide here a description of some key optimization models.
Financial optimization models are classified into two broad areas of
application: (1) risk management and (2) financial engineering. Within each
class we discuss several models and point out how these models have
a common underlying theme (often, but not always). For each application
we provide a brief description of the problem with references to related
literature, we define the underlying optimization model in its most basic
form, and we discuss important variants or extensions. Quite often we point
at open problems and difficulties either in modeling the problem or in
solving the model. Our goal is to help analysts understand the applications,
by removing much of the jargon which is usually encountered in this field.
We also aim at helping users understand the models and remove the
“black-box” syndrome from some very important analytic techniques.

This chapter is organized as follows: section 2 classifies the problem
domains of financial optimization and section 3 discusses several models
that relate to risk management. The companion chapter in this book
presents models of financial engineering and provides a brief survey of
current solution methodologies. A technical report by the same authors,
Dahl, Meeraus, and Zenios (1989) provides a library of well-documented
financial optimization models and data, developed in the general algebraic
modeling system GAMS of Brooke, Kendrick, and Meeraus (1988).

2 Problem domains

Most financial optimization models may be classified in two broad classes
according to their primary objective. These classes we call here: (1) risk
management and (2) financial engineering. Risk-management models are
used to select portfolios with specified exposure to different risks. Finan-
cial-engineering models are used to structure new financial instruments in
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order to target specific investor preferences, or to take advantage of
arbitrage opportunities. Below we shall characterize both classes and
describe the scope of optimization within each one.

2.1 Risk management

One primary function of financial markets is to transfer risk. The transfer
mechanism assigns market prices to each type of risk - called risk premia
- at which supplies and demands are equalized. Although this means that in
equilibrium all risks are priced fairly, so all securities have the same
expected instantaneous rate of return, one cannot infer that all securities are
equally good for all investors. Thus, due to the nature of their business,
some investors prefer current income over future performance, while others
are concerned with always staying fully funded. Investors who are willing to
take a bet on their market views can do so by taking on certain risks, while
those who are uncertain or risk averse can hedge their positions.

Risk management is concerned, firstly, with selecting which risks one is to
be exposed to and which risks to be immunized against. Secondly, it is
concerned with assessing the risks of different securities, and, thirdly, with
the construction and maintenance of portfolios with the specified
risk-return characteristics. The focus of optimization models is primarily
on the third activity, but all three are integrated and interdependent. We
give here a classification of different financial risks and examine methods of
risk control. Emphasis is placed on the role of optimization models for risk
management.

2.1.1 Financial risks
Financial risk is multidimensional. Therefore, a prerequistte to the
selection of risk exposure is the identification of the risk forms that are
present. The following list serves as the general framework for our
discussion:
1 Market risk,
2 Shape risk,
3 Volatility risk,
4 Sector risk,
5 Currency risk,
6 Credit risk,
7 Liquidity risk,
8 Residual risk.

Market risk has slightly different interpretations, depending on which
market is analyzed. In the stock market this form of risk is associated with
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the movements in the market index of portfolio returns. According to the
Capital Asset Pricing Model (CAPM), see for example Sharpe (1985), all
securities must be priced so that their expected returns at equilibrium are
a linear combination of the risk-free return and the market index portfolio
return. The weight of the latter for a particular security is the security beta
(B) which indicates the relative marginal variation of the returns of that
security with respect to the market portfolio. Hence, when the market
moves by 1% the expected return on a security will move by %.

In the fixed-income market, the traditional measure of market risk is
interest-rate risk. In general terms this is risk caused by movements in the
overall level of interest rates on straight, default-free securities. More
specifically, it is the risk associated with a uniform increase in all
default-free interest rates. When interest rates rise marginally the price of
a regular bond drops by the bond’s dollar duration, viz. the first-order
derivative of the yield—price relation. Measured as percentage changes, the
price effect is given by the bond duration, viz. the elasticity of the yield—price
relation for that bond.

CAPM in the stock market, and duration models in the fixed-income
market, are single-factor models of security returns (i.e., both assume
asingle source of risk: the market). Security attributes, like bond cashflows,
determine the security sensitivity to movements in this risk factor. Hence,
when a risk premium for the factor is determined by general equilibrium
conditions, security returns are also determined as the product of price (risk
premium) and quantity (contents of the factor).

In more general models one encounters several independent risk factors.
In this context security attributes determine the sensitivity of the security to
cach factor. At equilibrium, the total supply and demand for each risk must
be equal. Each risk factor has a risk premium associated with it and, at
equilibrium, security returns are determined as the sum over all factors of
the total value of that factor in the security (premium times quantity of the
factor). This hypothesis is termed the Arbitrage Pricing Theory, Sharpe
(1985). Under this hypothesis, market risk is merely the effect of one out of
many risk factors, the effect of which is measured by the conventional beta
(for stocks) or duration (for bonds).

Shape risk is applicable to the fixed-income market. It is the risk caused by
non-parallel shifts of interest rates on straight, default-free securities (i.c.,
changes in the shape of the term structure of interest rates). To see the effect
of shape risk assume that the yield curve is initially flat at 10%. The prices of
two zero coupon bonds, one maturing in one year and the other maturing
in ten years, are therefore 90.91 and 38.55, respectively. The two securities
have durations of 1 and 10, respectively, so for parallel shifts of the term
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structure, the price of the second security is expected to move roughly ten
times as much as the price of the first one, and in the same direction. An
investor who expects interest rates to decline would therefore prefer the
ten-year bond which promises the highest return. However, if the yield
curve tilts upward so the one-year rate decreases to 9% and the long rate
increases to 11%, the investor will experience a loss of 9.56% relative to
investing in the one-year bond, being subjected to shape risk.

Shape risk can be quantified. Empirical analyses of the returns on U.S.
treasuries indicate that three independent factors are sufficient to explain
98% of the variations of the term structure; see Garbade (1986) and
Litterman et al. (1988). These factors are characterized by their shape
impact: changes in the first factor imply almost parallel shifts to the term
structure, so this could be thought of as the market risk factor. Changes in
the second factor steepens the curve, while changes in the third factor
implies changes in the overall curvature of the curve. Furthermore, these
factors have been historically stable. This implies that one can compute the
return sensitivity of different instruments to each factor and be reasonably
certain to quantify shape risk. Having quantified the risk allows investors to
select securities that expose them to risk according to their views as to
parallel movements, steepening of the term structure, and so on.

Volatility risk is most clearly displayed in options. These instruments are
characterized by highly asymmetric returns. If the underlying instrument is
worth more than the strike price of a call option on the expiration date, the
option is exercised returning the difference. But, if the underlying security is
worth less than the strike price, the option expires worthless. Thus, an
option resembles an insurance policy: it has value only if chances are that
something might happen. The more volatile the markets are, the higher is
the price of an option. Therefore, volatility changes have a major impact on
options and securities embedding options (for example callable bonds,
Mortgage-Backed Securities (MBS) which include prepayment options,
etc.), even in an environment that is unchanged in all other respects.

Volatility risk is not only present in options. Regular straight bonds are
also subject to volatility risk. The reason is that the yield—price relation is
convex. This property implies that bond prices are affected more by a unit
yield drop than by a unit yield increase. Therefore, the higher the volatility
of yields around a common expected value, the higher the bond expected
return. The effect is more important the more convex the yield—price
relation is, i.e., the longer the bond maturity and the more dispersed the
bond cashflows are. Similarly, the sensitivity of options to volatility is
derived from their high positive convexity. Thus, sensitivity to volatility
may be approximated by convexity.



8 H. Dahl, A. Meeraus, and S. Zenios

Sector risk stems from events affecting the performance of a group of
securities as a whole. A sector is a set of securities sharing some common
characteristics. Thus, the treasury sector consists of those sccurities issued
by the US Treasury. The agency sector covers bonds issued by various
government agencies like the Federal Home Loan Bank, the Government
National Mortgage Association, and so on. Mortgage-backed securities
may also be defined as a sector.

Since sectors share some common attributes, they are likely to be
influenced by common risk factors. Consider for instance the mortgage
sector: when interest rates decline, volatility increases, and macroeconomic
factors are “favorable”, the likelihood of prepayment increases. An investor
who expects this scenario to happen may choose to take a bet on his views
by seiling MBS.

Currency risk is the risk caused by exchange-rate fluctuations. Investors
who own portfolios in foreign currency denominated securities will lose
when exchange rates depreciate and gain when they appreciate. Another
type of risk in international investment is political, or country, risk.
Governments may change tax policy, trade policy, or even expropriate
foreign investments.

Credit risk covers risks due to up- or down-grading of a borrower’s credit
worthiness. These changes are caused by changing prospects on the issuer’s
ability to meet all future obligations. Thus, if a borrower is more likely to
default on some or all future payments, his credit worthiness deteriorates,
and investors in turn will demand a higher premium for holding the debt.
This in turn implies a price drop, hence risk. Credit risk is of importance
when considering corporate bonds, but it is also a major influence on
corporate money market instruments, bonds issued by sovereigns, etc.

Bonds exposed to credit risk can be thought of as contingent claims.
Thus credit risk is related to the shape and volatility risk factors. However,
other factors relating to the management and activities of the issuing firm
contribute to credit risk (e.g., variations in earnings, age, debt/equity ratio,
and so on). Bond ratings are designed to indicate credit worthiness, and
controlling portfolio composition across ratings may therefore be used as
a means to partial credit risk protection. A comprehensive approach
demands analysis of the individual firm to see if its particular circumstances
justify taking a bet on its credit worthiness.

Liquidity risk is due to the possibility that the bid-ask spread on security
transactions may change. This type of risk is especially important for
actively managed portfolios which depend on frequent trading. If the
liquidity of a particular instrument worsens (i.e., the bid-ask spread
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widens) losses will materialize when selling the security if all other market
conditions are unaltered. There exist many and diverse reasons for liquidity
drops. For instance, due to prepayment on mortgages the circulating
volume of a MBS may drop, making it more difficult to match buy and sell
orders. Another reason could be institutional changes in the market place.
For instance one of the side effects of the recent Exchange Reform in
Denmark has been a marked reduction in liquidity for large groups of
securities, as can be witnessed from the daily published bond price list from
the Copenhagen Exchange. Typical measures of the liquidity of a security
are circulating volume and trade volume over a period.

Residual — or specific — risk is, as the name indicates, all other risk. In as
much as the previous list accounts for systematic influences, residual risk is
security specific and non-systematic. Much of the activity to ‘“‘beat the
market” lies in buying securities which are expected to be underpriced, thus
representing relative value, and selling seemingly overpriced securities. In
effect, this means taking a position on residual risk.

2.1.2 Risk control techniques

An important question for controlling risk is “How systematic is
a particular type of risk (i.e., to what degree does it affect all securities in
a given sector)?” Non-systematic risks, that result in returns with
correlation close to zero across instruments, can be reduced by diversifica-
tion. Diversification, however, only leads to risk averaging for highly
correlated risks. In the latter case hedging strategies are required.
Distinguishing systematic from non-systematic risk is important in order to
develop the appropriate investment strategy.

To see how hedging works, consider the following single-factor model.
Assume that the risk factor evolves according to some stochastic differential
equation (i.e., an It process, Ritchken (1987)). Let:

F be the factor level,

t represent time,

u and ¢ be two deterministic functions depending on time and the factor

level, and w represent a Gauss—Wiener process.
Then the factor evolves according to:

dF = pdt + gdw (1)

Now, assume that the price P of a given security is a twice continuously
differentiable function of the single factor and of time. Then, by Ité’s
lemma, the security price evolves according to:

0 JoP 1 92P

sz—PdF+—dt+

~ __dF? 2
JF ot 26F2d @
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Substituting (1) into (2) and collecting terms yields:

oP 0P 1 ,%P oP |
dP= (W +ots0 an)dhL —do (3)

The first term at the right-hand side of equation (3) is deterministic and
depends only on time. It is therefore risk free and represents the time value
of the security. The second term, however, is stochastic. It represents the
impact of random shocks to the underlying factor on the security price.

To develop a simple hedge, thus eliminating the factor risk, consider two
securities exposed to the same factor with prices P and Q respectively.
Choose nominal values in the two securities, x and y respectively, such that:

OP 00
xoﬁdw+yaﬁdw 0
ie.:
oP 00
- 4
AF TR T @

Then the overall position is risk free. Equation (4) states that the factor

. .. o ., 0P,
dollar duration of the position must be zero to eliminate factor risk: oF is

the sensitivity of the security price to marginal changes in the factor level, or
the security’s factor loading. This hedging arrangement works out only if
the factor is common to both securities (i.e., it is systematic), so that
marginal returns are perfectly correlated. It is easily seen that, if each of the
two securities were also exposed to residual factors, the hedging arrange-
ment in (4) would have eliminated the common factor risk but left the
residual risks in the portfolio.

The investment strategy {x,y} derived from (4) is only a local hedge. In

oP . . . .
general 3F is time dependent and to ensure that the portfolio remains

riskless the position must be continuously adjusted. In practice, this is not
feasible, and the problem is solved by discrete portfolio rebalancing. This
calls for stabilizing conditions on the hedge. Having eliminated first-order
effects by (4) stabilization is done by forcing second-order, or convexity,
restrictions to improve tracking. We could also view this problem from
a different angle: By not adjusting the hedge continuously, the portfolio is
subject to volatility risk. As described earlier volatility risk is controlled by
convexity conditions.

Note that the principles behind the single-factor hedge in equations
{1)-(4) apply to multifactor models as well. For instance, in the presence of
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two common factors three securities would suffice to eliminate risk. Two
would be used to eliminate the first factor and the third would be combined
with the other two to eliminate the second factor.

Dropping the non-descript term “factor” and assuming that F is bond
yield then (4) is the classical duration matching strategy, see Zipkin (1989).
Immunization against interest-rate risk is achieved when dollar durations
on assets and habilities are equal, (i.e., net dollar duration is zero). Another
interpretation is reached by letting F represent the market. Then, in the
single-factor world of CAPM a risk-free position is achieved when net
sensitivity to the market is zero (i.e., the net portfolio beta is zero). In other
words, equation (4) describes the principles of hedging market risk.

2.1.3 The scope for optimization in risk management

Viewed in the context of the previous section, risk management is
nothing more than taking positions in generic or specific attributes of the
securities. An important problem, however, is that generic attributes are
not traded in the market! Rather, one can invest in securities which are in
effect packages of attributes. This complicates risk management. For
instance, suppose that we wish to target a particular exposure to
interest-rate risk because we expect a parallel downward shift of the yield
curve. If we could simply buy a pure duration bond (i.e., one exposed to
interest-rate risk and nothing else) risk management would be simple. But
such a bond is not traded. Instead we can buy a real bond which is
simultaneously exposed to interest-rate risk and other factors. Targeting
duration -using one such bond may inadvertently increase shape risk,
volatility risk, credit risk and so on. This means that comprehensive risk
management is faced with the problem of simultaneously controlling the
interaction of many securities and their attributes in shaping overall
portfolio exposure.

The problem is complicated even further when realizing that most
investors face several institutional requirements in setting up a portfolio.
Thus, regulations or firm policy may limit holdings in particular sectors,
accounting rules may imply bounds on holdings in securities traded at
a discount or premium, and the resources allocated to risk management
may favor more conservative approaches over active management, putting
yet other constraints on the portfolio composition.

The setting in which the problems are addressed — as outlined above
— explains the important role of optimization models in risk management.
Mathematical programming techniques can effectively identify the solution
to complex portfolio planning problems with many constraints. Using
mathematical programming we can find feasible solutions to the problem,
or demonstrate that a risk exposure target is unattainable.
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An important unresolved issue is: “What to optimize?” On the surface,
this question seems trivial: minimize the cost of setting up the portfolio, or
maximize its expected return. However, modern portfolio theory dictates
that systematic risks are rewarded in a way that makes expected
instantaneous returns equal on all securities in equilibrium, and all
securities with the same attributes should have the same expected return to
eliminate arbitrage. Therefore, if all systematic risk is eliminated, we are left
with a risk-free position plus non-systematic risk. The expected rate of
return on this position must be equal to the risk-free rate to eliminate
arbitrage. The consequence is that high expected returns imply exposure to
high levels of risk. Thus, maximizing returns or minimizing costs has the
hidden property of maximizing uncontrolled risk.

Consider as an example the standard bond portfolio immunization
model (explained in detail in section 3.1). The objective is to maximize net
portfolio yield subject to present value and dollar duration constraints. The
results of this model depend on the selection universe. If, for instance, low
credit corporate bonds are included, the model will pick such bonds
to achieve immunization, since they have higher yields than straight,
default-free bonds. An apparent gain is realized by speculating in credit and
sector risk without a systematic measure of the exposure to these two risk
factors.

When the universe is restricted to current US Treasuries (i.e., bonds with
no default risk, liquidity risk, etc.) the optimization results in a two-bond
portfolio, consisting of a very long and a very short bond (a barbell). The
overall portfolio is dollar duration matched, hence free of interest-rate risk.
However, the portfolio is maximally exposed to shape risk. Also, to
maintain dollar duration matching, the portfolio must be rebalanced
relatively frequently, incurring high transaction costs and liquidity risks
which are not accounted for in the optimization model.

To achieve higher stability and reduce shape risk, second-order con-
straints may be imposed on the model. The result will be less dispersed
cashflows across the horizon and a reduction of risk. The position will still
be exposed to volatility risk, however, and to correct, one may continue to
add higher-order constraints. In the limit, the result will be a cashflow
matched portfolio! This could have been obtained right away by using
a cashflow matching model - for example, the dedication model given in
section 3.3 — which apparently results in a more costly portfolio than the
immunization model. However, as the example shows, the reason for this
cost differential is that the dedicated portfolio is less risky than the
immunized portfolio. Therefore, there is reason to expect that, over a long
period, a dedicated portfolio will yield approximately the same as an
immunized portfolio. Empirical confirmation of this observation is given in
Maloney and Logue (1989).
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The lesson drawn from the examples is that optimization can not be used
blindly. Instead it must be coupled with a careful analysis of which risks the
model is buying when maximizing returns. Thus, the role of the portfolio
manager becomes crucial. The manager must be able to formulate clear
objectives, state the economic and institutional constraints, choose a suit-
able selection universe, and analyze risks and returns. In all this,
optimization is a tool which simplifies the shaping process. If all systematic
risks are monitored, optimization can be used to pick underpriced
securities and thus enhance performance. If risks are not monitored,
however, optimization will maximize exposure to them. Optimization will
make a good portfolio manager better, and a bad one worse!

2.2 Financial engineering

With the continued deregulation of markets, the increased volatility, and
the intensified competition in the financial industry, financial innovation
with the engineering of new instruments has accelerated rapidly.
Well-known new products include standardized financial futures and
options, floating-rate instruments, caps and floors, interest-rate and
currency swaps, mortgage-backed securities, adjustable rate preferred
stock, as well as derivatives of all these (for a general reference, see
Walmsley (1988)).

Most of these products represent new packages of old attributes. It is well
known, for example, that options can be replicated by a continuously
rebalanced portfolio of a risk-free security and the underlying instrument.
Nevertheless the new products have been successful additions to the
financial markets. The main reason is that the new instruments typically
carve out a few generic risk attributes from the initial building blocks,
making it easier to control risk. Options, for example, are primarily
volatility instruments but they are also exposed to interest-rate risk.
A position where a call option is bought and a put option is sold, and where
both options have common underlying instrument, expiration date, and
strike price, is equivalent to a forward contract. However, breaking up the
forward into options, and buying or selling these, enables investors to take
direct positions in volatility, a possibility which the forward itself does not
offer.

In this sense, financial engineering is one more aspect of risk manage-
ment. As discussed above, risk management is a process of creating
a portfolio of securities with certain attributes, from existing attribute
packages. However, the resulting portfolio is not sold as a standardized
product, while the objective of financial engineering is to design products
that are added to the market.

A functional categorization of financial engineering products follows the
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list of financial risks of section 2.1.1. Thus, interest-rate futures and
forwards, floating-rate notes and inverse floaters are targeted at isolating
market risk. Interest-rate swaps can be thought of as shape instruments,
since their return depends on changes to the shape of the term structure.
Options are volatility products. Index-linked securities often carry sector
attributes. Currency swaps, options, futures, and rolling forwards are
examples of currency risk instruments. Other instruments are primarily
credit enhancing. These include a long list of securitized assets (MBS,
securitized bank loans, etc.) and asset swaps. Liquidity enhancement is
inherent in put bonds and secondary-market mortgage products. Finally,
stock and bond indices can be thought of as stripping out residual risk.

Reviewing this list, it becomes apparent that financial engineering is
a mixture of service activity and arbitrage. By repackaging and stripping
risk attributes to fit investor preferences and needs, the financial engineer
improves the marketability of the products. In effect, he takes over some of
the responsibilities of decentralized portfolio managers, and should be
rewarded with a service fee. At the same time, however, the intention is to
utilize mispricings in the market to capture risk premia. Thus, by stripping
a US Treasury in zero coupon bonds the financial engineer disaggregates
shape risk. If he can sell the resulting portfolio for more than the price of the
treasury, he captures a riskless arbitrage profit which is due to mispriced
shape risk.

In order to standardize products, certain guidelines must normaily be
obeyed. Thus, to obtain an AAA rating on an issue, rating agencies may
require proof that the structure is default free under both best-case and
worst-case scenarios. To simplify this task, standard procedures and
scenarios have been developed, which need not be completely in line with
reality. For instance, when issuing Collateralized Mortgage Obligations
(CMOs), one requirement is that the collateral must sustain bond
retirements, both in the very unlikely case of an immediate complete
prepayment of all mortgages in the collateral and in the equally unlikely
case of no prepayment, Sykes (1987).

As in the case of risk management, the mere existence of such constraints
make optimization a key tool in financial engineering. Mathematical
programming efficiently ensures feasibility and identifies the difficulties
when feasibility cannot be attained. However, there also appears to be
genuine opportunities for optimization in financial engineering. The reason
is that there is generally some flexibility in structuring constraints, whether
rating-agency or market dictated. For example, when structuring CMOs,
the expected life of a tranche determines its price. A three-year tranche is
priced using a spread over three-year treasuries. However, three years in
market terms means any time period in the interval (3.0, 3.4) years. This
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slack may be sufficient reason to optimize profits, if several structures are
feasible. Similarly, with markets not always in equilibrium, certain
attributes may be relatively cheaper in some securities than in others, which
again implies a scope for constrained profit maximization or cost
minimization.

3 Model domains

In this section we discuss some optimization models used in risk-
management applications. For each model, we briefly describe its theoreti- -
cal background and then present the basic components of a mathematical
prototype. Also, when relevant, we discuss potential or actual extensions of
the models. We establish first some common notation. Unless stated
otherwise in subsequent sections the following are used:

U=1{1,2,3, .. I} denotes the universe of securities,
ieU indicates a security from the universe,
T={1,23,...T,..  denotes a set of discrete points in time,

teT indicates a point in time,
C,, indicates the cashflow from security ieU at time teT,
x; is the nominal holdings of security ieU.

3.1 A bond portfolio immunization model

Immunization is a portfolio strategy used to match interest-rate risk of an
asset portfolio against a future stream of liabilities, in order to achieve net
zero market exposure. There is a large literature on portfolio immuniz-
ation, see for instance Bierwag (1987), Fabozzi and Pollack (1987), Granito
(1984), and Platt (1986). We describe here the fundamentals.

3.1.1 Background
Portfolio immunization is in essence a hedging strategy based on
the principles of section 2.1. As both assets and liabilities are interest-rate
sensitive (i.e., sensitive to the same common factor) a hedging strategy can
be set up which eliminates net sensitivity to that factor. It was shown in
section 2.1 that immunization is achieved when a portfolio is selected with
net zero present value sensitivity to the factor of interest.
To compute the interest rate sensitivity of a cashflow, consider the
yield—price relation. Let:
r; denote the cashflow yield, and
P denote the present value.
The present value of a security is given by:
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Pi:ZCit(1+ri)_t (5)
teT
Differentiating with respect to cashflow yield, gives the present value
sensitivity k; — or dollar duration — of the cashflow:

kiz_ztcit(1+ri)_(t+“ (6)
teT
It is seen that dollar duration is additive. Thus, the dollar duration of
a portfolio is given by:

k=3 kx; (M
ielU
Given the present value, P;, and dollar duration, k;, of liabilities, an
immunized portfolio must satisfy the two conditions that present values
and dollar durations on assets and liabilities be equal:

Y Px;=P, @)
ielU
Y kxi=k, ©)
ielU

3.1.2 The optimization model
Immunized portfolios can be established in many ways. It is
therefore natural to examine whether they can be put together optimally.
The most commonly used objective has been to maximize the asset
portfolio yield. The idea is that since the portfolio return is “risk-free” we
might as well maximize it. The portfolio yield is given implicitly by equation
(5) which is a non-linear expression. It turns out, however, that a first-order
approximation to the true portfolio yield is the dollar duration weighted
average yield of the individual securities in the portfolio, i.e.:
~ Zicvkirix;
- Zicvkix; (19
The denominator in (10) is given by (9) to be equal to k,, hence maximizing
approximate portfolio yield is equivalent to simply maximizing the
numerator in (10). In this case, the core immunization model is a linear
programming problem:

[IMMUNIZATIONI]

Maximize Y. ki ;x;
ieU
xeR!



